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NOPIENCLATURE 

a Crack length 

B Thickness 

E Young's modulus 

E' A measure of s t ra in  hardening i n  the  assumed b i l i n e a r  s t r e s s - s t r a in  

behavior of the material vide equation (1) 

f Compliance function, EvB/P 

F K ca l ib ra t ion  f ac to r ,  K/PBfi 

K St re s s  in t ens i ty  f ac to r  

Value of stress in t ens i ty  a t  which the crack starts growth 

ASTM E399 va l id  plane s t r a i n  f r a c t u r e  toughness 

is the  maximum value of stress in t ens i ty  used during the  f i n a l  s tages  

of f a t igue  cracking 

P l a s t i c i t y  corrected stress in t ens i ty  f ac to r  value corresponding t o  

a given crack extension a s  i n  the  R-curve determination 

S t r e s s  i n t ens i ty  f ac to r  corresponding t o  2% crack extension a s  mea- 

sured by the  secant technique 

S t r e s s  i n t ens i ty  f ac to r  corrected f o r  p l a s t i c i t y  a s  per equation (4) 

KIC 

[ K I C I  j g g  

Kf(max) 

KR 

% 

K" 

m Yielding cons t ra in t  i n  K-R re la t ionship  i n  equation (2b) 

M Yielding cons t ra in t  in K-Reff r e la t ionship  i n  equation (2a) 

P Load 

r Distance from the  crack t i p  along x di rec t ion  

R Plas t i c  zone s i z e  

Reff 

W Width 

WC 

Nominal p l a s t i c  zone s i z e  

C r i t i c a l  width a t  which the crack i n i t i a t e s  

iii 



OYY 

OY 

€YY 

V 

ve 

AvP 

AV 

AVC 

h 

Normal stress i n  y d i rec t ion  

Uniaxial yield s t rength  determined according t o  .02 o f f s e t  procedure 

Normal s t r a i n  i n  y d i rec t ion  

Yield s t r a i n  m d  is equal t o  

Total displacement 

E la s t i c  component of the displacement 

Tota l  deviation from the linear displacement 

Deviation from linear displacement due to the growth of plas- 

t i c  zone 

Deviation from l i n e a r  displacement due t o  the growth of crack 

Tota l  crack extension 

Physical crack extension 

Crack extension equivalent to  the growth of p l a s t i c  zone 

and is equal t o  S f f / 2  

oy/E 

i v  



A NEW BASIS FOR THE DETERMINATION OF FRACTURE TOUGHNESS 

S. Banerjee* 

Ames ReseJirch Center 

INTRODUCTION 

Plane s t r a i n  f r ac tu re  toughness, KIC, is a property of a material and 

is expected t o  be independent of t h e  s i z e ,  configuration, ar?d loading of t h e  

specimen o r  the  s t ruc ture .  A procedure f o r  the  determination of KIC is 

described i n  ASRl E399 [I].' 

is iden t i f i ed  by the  deviation from l i n e a r i t y  i n  t h e  load-displacement test 

In  t h i s  procedure, t he  start of crack growth 

record. This approach is s imple  and reasonable. But p l a s t i c i t y  preceding 

o r  accompanying the  crack growth is not  considered i n  a sa t i s f ac -  

tory manner which can cause KQ or ,  i n  some cases, 'tc t o  depend on the  

specimen width. 

A new approach is proposed here which gives a width-independent KIc 

is defined as the  value of the  stress 

The 

KIC value. In  the new approach, 

in tens i ty  fac tor ,  K, a t  which the  crack starts physical extension. 

approach is  based on the r e s u l t s  of approximate analyses and supporting 

experimental data. A t  f i r s t ,  the  ex i s t ing  approaches t o  the  determination 

of KIC are examined. Then, an ana lys i s  is presented which demonstrates 

that the growth of the  plast ic  zone and the  cons t ra in t  i n  a compact tension 

specimen can depend s ign i f i can t ly  on the  specimen width. 

typ ica l  R-curve [Z] is analyzed t o  evaluate the simultaneous contribution 

Afterward, a 

of crack growth and crack t i p  p l a s t i c i t y  t o  the  observed deviation from 
*Senior 6? Resident Research Association on leave from the India 

I n s t i t u t e  of Technology, Bombay. 

lThe i t a l i c  numbers i n  brackets r e f e r  t o  t h e  list of references 

appended t o  t h i s  paper. 



l i n e a r  elastic behavior. 

very simple procedure f o r  the  determination of f r ac tu re  toughness. 

f i n a l  discussion includes a comparison of the  ana ly t ica l ly  predicted and 

experimental results, a descr ipt ion of the proposed approach, and the  

implications of the  r e s u l t s  obtained. 

A combination of these two analyses produces a 

The 

EXISTING APPROACHES TO THE DETERMINATION OF KIC 

I n  ASTn E399 [ I ] ,  the load, P corresponding to  the  start of crack Q’ 
growth is ident i f ied  by the  5% secant technique. 

t o  correspond to an equivalent crack extension of 2%. 

The 5% secant is supposed 

According t o  ASTM E399, three possible  types of load-displacement test 

records are obtained during the  t e s t i n g  of the  precracked specimens. 

material with low toughness and high yield s t rength  i n  which the  crack 

extension occurs abruptly gives w h a t  is termed a Type-I11 load-displacement 

test record [I]. The value of ICIC calculated from P i n  such a case is  

la rge ly  independent of the  s i z e  of the  specimen. 

displacement test record is similar t o  the  Type I11 3n t h i s  respect. 

ever, i n  materials with soatewhat higher toughness, the  crack and p l a s t i c  

zone grow simultaneously. 

displacement test record. According t o  E399, i n  such a case, the value of 

% computed from P is considered t o  be a va l id  KIC measurement i f  the  

following two conditions are sa t i s f i ed :  (a) the  specimen thickness, 

B L 2.5 (KQ/uY)’ where u 

where Pmax 

cracked body. For c l a r i t y ,  the KIC obtained i n  such a manner w i l l  be 

A 

Q 
The Type-I1 load- 

How 

This type of behavior gives a Type-I load- 

Q 

is the y ie ld  strength; and (b) Pmax/PQ s 1.1 

is the  maximum load encountered during the loading of a pre- 

Y 
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referred t o  as [K ) . Recent experiments [3-9) have shown that K and, 

i n  some instances,  t he  va l id  [ICIC] 
I C  3 9 9  Q 

depend on specimen width W. 
3 9 9  

ASRi E399 impl ic i t ly  assumes t h a t  the p l a s t i c  zone s i z e  depends only 

on specimen thickness and is independent of width. 

values is observed in the  compact ten- width dependence of 

s ion specimens which s a t i s f i e s  the ASTM E399 requirement that the  thickness 

L 2.5 (K /a 12. Further, the experimental da ta  ind ica t e  t h a t  the thickness 

has only a small e f f ec t  on K values obtained from the  compact tension 

and three-point bend specimens. 

cannot guarantee a l imited p l a s t i c i t y  during the  start  of crack growth unless 

the width is correspondingly increased. 

On the other  hand, the  

\ Or [ K I c J 3 9 9  

Q Y  

Q 
It thus appears t ha t  a la rge  thickness 

The second condition above, concerning P /P , is specif ied t o  = Q  
guarantee that the  deviat ion from l i n e a r i t y  is produced primarily by 

crack extension. Pmax/Pp 5 1.1, can be achieved 

only when the R-curve [Z] is f l a t ;  where the  R-curve is  a p lo t  of stress 

in tens i ty  f ac to r  corrected f o r  p l a s t i c i t y  vefsus the  corresponding physi- 

cal crack extension. For a given material, a load-displacement test 

record which s a t i s f i e s  the requirement t ha t  P /P 5 1.1, can be obtained 

i n  a very l imited combination of specimen s ize  and configuration. A speci- 

men is tes ted i n  a laboratory t o  simulate the behavior of a s t ruc tu re  i n  

service.  Yet the form of load-displacement test record of the specimen 

where P /P d 1.1 may not correspond t o  the form observed i n  a real 

engineering s t ructure .  Therefore, [KIC]3gg of a mater ia l  measured i n  a 

specimen where Pmx/PQ .S 1.1 

f r ac tu re  behavior of a s t ruc tu re  where 

The condition t h a t  

- Q  

max 9 

may not be  meaningful in predict ing the 

Pmax/PQ > 1.1. 

3 



The problem of the  width dependence of l$ values has been 

examined by others. Kaufman [SI has proposed a relaxation of the 

requirement and t h e  use of specimens with thictcness/width 
pllUX/pQ 

r a t i o s  of less than 0.5. 

approach to  predic t  toughness in specimens with varying widths. 

approach is empirical  and is concerned with the  maximum load a t  f a i l u r e  

and therefore  relates to the  f i n a l  propagation r a the r  than the start of 

the  crack groveh. 

is based on t h e  actual point of crack extension. Ee has recamended a 

var iab le  secant technique where the secant value is adjusted according 

t o  specimen width. 

Newman [IO] has suggested a -parameter 

This 

Munz [3] has proposed an approach where t h e  toughness 

PLASTICITY, CONSTRAINT, AND WIDTH OF A COMPACT TENSION SPECIMEN 

Recently, i t  has been shown through a simple and approximate analy- 

sis [11-13] that the  width and crack length of single-edge notch speci- 

mens a t  a e v e n  value of 

zone s i ze ,  the yielding constraint ,  and the crack opening displacement 

(COD). 

reported experimental observation tha t  the value of KQ Increases with 

increasing width 13-91. The width dependence of \ suggests t h a t  t h e  

growth of the p l a s t i c  zone ahead of the crack t i p  may be dependent on the 

specimen width. On the  other hand, the two-dimensional f i n i t e  element 

analyses do not give e n t i r e l y  sa t i s f ac to ry  results. For instance, the 

p l a s t i c  zone size can be considered equivalent t o  a vir tual  crack exten- 

sion. 

p l a s t i c  zone size. But the f i n i t e  lement analyses give width-dependent 

K s ign i f i can t ly  Influence the nominal p l a s t i c  

These results are i n  q u e l i t a t i v e  agreement with the recently 

Accordingly, the displacement of t he  specimen depends on the  

4 



plasticity-induced displacement values that are subs tan t ia l ly  less than 

the experimentally determined ones [3] par t icu lar ly  when the p l a s t i c  zones 

are small. Thus, the reported two-dimensional analyses do not  give a sat- 

i s fac tory  representation of the  growth of small p l a s t i c  zones. 

i t  must be recognized tha t  the  crack t i p  deformation i n  the  f r ac tu re  tough- 

ness specimen is  a three-dimensional e l a s t i c -p l a s t i c  boundary value problem. 

Since such a problem is not s a t i s f a c t o r i l y  resolved as ye t ,  the  simple and 

approximate ana lys i s  reported earlier [11-13] is used t o  evaluate the  

e f f ec t  of specimen width on the  displacement, constraint  and the  I$ value. 

What follows i n  t h i s  sect ion is a br ie f  ou t l i ne  of t h i s  ana lys i s  and a com- 

parison of the  experimental and the  ana ly t i ca l  resu l t s .  

ment between the  experimental and the  ana ly t i ca l  r e s u l t s  va l ida t e  the  analy- 

sis reported here. 

In f a c t ,  

The good agree- 

The loading of a compact tension specimen can be s a t i s f a c t o r i l y  rep- 

resented by the combination of an a x i a l  force  applied a t  the  midpoint of 

the ligament (W-a) and a bending moment [Id]. 

t r ibu t ion  a t  dis tances  c lose  t o  the crack t i p  is assumed, where 

the dis tance from the crack t i p .  

observations (15- 171. The l i n e a r  (-I) type d i s t r ibu t ion  arises because 

of the  bending of the compact tension specimen 1181. Experimental obser- 

vations confirm tha t  such a composite s t r a i n  d i s t r ibu t ion  e x i s t s  ahead of 

the crack 119 1. 

sented i n  Fig. 1. a p lo t  of l oca l  s t r a i n  E against  the dis tance X,  

measL-o-d from the t i p  of a crack of length a. The s t r a i n ,  E is re la ted  

t o  the stress, u , through an assumed b i l i n e a r  s t ress -s t ra in  behavior of 

the material which car1 be represented by 

An (r)-lI2-type s t r a i n  dis- 

r is 

The assumption follows from experimental 

The composite s t r a i n  d i s t r ibu t ion  is schematically pre- 

YY 

YY , 
YY 
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u - c  E f o r  E < E  
Y Y Y Y  Y Y Y  1 

and 

where E' is a measure of the  strain hardening of the  material. In the  

subsequent results calculated and reported here, E' is assumed t o  be equal 

t o  E1150. 

l imited amount of crack t i p  yielding, and therefore  are not  s ign i f i can t ly  

influenced even i f  E' is assumed t o  have a value 3 times less, that is 

E/450. 

It may, however, be noted that the  r e s u l t s  correspond t o  a 

As mentioned above, the  ana ly t i ca l  results reported here correspond 

t o  a l imited amount of crack t i p  p l a s t i c i ty .  Therefore, the  plastic zone 

and the  s t r a i n s  a t  the  crack t i p  are ra the r  small. 

of the s t r a i n  i n t o  stress through equation (1) is  a reasonable procedure. 

Thus, the conversion 

The bending moment and the a x i a l  force  can then be wr i t ten  in terme of 

the  u stress. 
Yf 

Based on the  composite s t r a i n  d is t r ibu t ion  (Fig. I ) ,  load and moment 

balance equations were formulated. 

Brown's method 1201. 

p l a s t i c  zone s i ze ,  R = (X, - XI), were obtained. 

These equations were solved using 

From this, the s t r a i n  reversal  point,  X2, and the  

The loadl ine and crack 

mouth opening displacements of a compact tension specimen computed accord- 

ing t o  the above procedure agree w e l l  with the  experimentally observed 

values [22] .  

The load-moment balance equations were solved f o r  progressively 

increasing loads f o r  a given specimen s ize .  The calculat ions were performed 

6 



f o r  d i f f e ren t  widths a t  a / w  = 0.4, 0 . 5 ,  and 0.6 t o  evaluate the  e f f e c t  

of width and crack length on the  value of R a t  d i f f e ren t  loads. 

As shown i n  Fig. 1, t h e  nominal p l a s t i c  zone s i z e ,  R,  is defined by 

the point ahead of the  crack t i p  a t  which E = E , where E is the  

y ie ld  s t r a i n  and is equal t o  ay/E. Therefore, a t  

Figure 2 io a p lo t  of the  s t r a i n ,  E , versus r ,  the distance from the  
YY 

crack t i p  in t he  plane of t he  crack. 

YY y Y 

= R ,  OYY = “y- 

When the  load is small, t h e  p l a s t i c  

zone s i z e  has the  shaQe of a p a i r  of horns as schematically presented i n  

Fig. 2. 

p l a s t i c  zone s i z e  is approximately equal t o  R,  the  distance from the  

crack t i p  a t  which E = E [ 2 1 ] .  Correspondingly, t ha t  is i n  the  plane 

s t r a i n  condition, t he  displacement and the  change i n  compliance is pro- 

duced by an e f f ec t ive  p l a s t i c  zone s ize ,  Reff , which is less than 

as shown In  Fig. 2. 

the  yielding cons t ra in t  a t  the  crack t i p .  

The ana ly t i ca l  results show that i n  such a s i tua t ion  the  ac tua l  

Y Y Y  

R [22 ]  

Both R and Reff depend on t h e  state of stress o r  

According t o  McClintock and Irwin [ZZ], Reff is r e l a t ed  t o  K 

through a re la t ionship  

Reff = (K/a,l2/Mn (2a) 

where M is a measure of the  y ie ld ing  cons t ra in t .  Likewise, R is 

r e l a t ed  t o  K through a s imi l a r  re la t ionship  

where m is a l s o  a measure of the  y ie ld ing  cons t ra in t .  It is assumed 

i n  t h i s  paper t h a t  

Reff = R/m (3)  

7 



Subst i tut ion of Eqs. (2a) and (2b) i n  (3) gives M - m2. 
can be calculated i f  K and R are known. 

Thus, m and M 

ahead of the crack t i p  can eff' The strain, E , a t  a dis tance,  r = r w 
be obtained from Eq. (3) and the  l/E dependence of 

shown i n  Figs. 1 and 2. The 1 / 6  dependence of the  

the s t r a i n  E as  

s t r a i n  gives 
YY 

Accordingly, 

This r e su l t  is shown schematically i n  Fig. 2. 

The assumption of Eq. (3) is reasonable and is consis tent  with the  

Reff fo lhwing  observation, 

equivalent t o  2% crack extension, t he  value of M calculated according t o  

the analyais  reported above is around 3. 

the p l a s t i c  zone s ize  is l a rge  and the shape of the  p l a s t i c  zone tends t o  

be circular. The state of stress i n  t h i s  case corresponds t o  the so-called 

plane stress case. Correspondingly, Reff = R and M = m = 1. These 

observations are i n  general agreement with the  proposed values of M f o r  

e f f '  p la in  s t r a i n  and plane stress conditions [22]. I n  addi t ion,  a t  r = R 

E = & cy and correspondingly a ay. This r e su l t  is Consistent 

with the ana ly t ica l  r e s u l t s  on e las t ic -p las t ic  stress d i s t r ibu t ion  and the  

nominal plastic zone s ize  [ 2 1 ] .  

A t  a stress in t ens i ty  value corresponding t o  

A t  higher stress in t ens i t i e s ,  

YY w 

The results from our analysis  are next examined through two d i f f e ren t  

re la t ionships:  K*/ay& as a function of AV /V and K*/a as a function 
P e  Y 

8 



of a. 

the  lat ter with the change i n  the yielding constraint .  

The former i s  concerned with the growth of the  p l a s t i c  zone and 

K* is the stress 

Intensi ty  fac tor ,  K, corrected f o r  p l a s t i c i t y  according t o  equation (4) 

discussed presently. 

K*/uyf i  and the  Growth of the P l a s t i c  Zone 

In the absence of crack growth, the Frowth of the  p l a s t i c  zone 

d i r ec t ly  relates t o  the  deviation from the  l i n e a r  e l a s t i c  behavior. 

According t o  Irwin's concept of v i r t u a l  crack extension [23], the  effec- 

t i v e  crack length aefi is given by 

a eff  c? + 'effl2 (4) 

where a is the  physical crack length. The values of Reff can be 

obtained from the  solut ion of the load and the  moment balance equation. 

The e f f ec t ive  crack length aeff 

used t o  calculate  K* which is  ca l led  the p l a s t i c i t y  corrected K value. 

The stress in t ens i ty  f ac to r ,  K, is calculated from the  physical crack 

i s  then obtained from equation (4) and i s  

length, a. It may be noted that the  difference between K and K* is  

rather  small since the IP Amurn value of R 

the a n a i , s i s  i s  small. 

tha t  could ba obtajzed from ef f  

Values of Reff can be used t o  ca lcu la te  the  deviation from 

l i n e a r i t y  through the  standard compliance relat ionship.  

from l i n e a r i t y  i e  expressed i n  term tif 

and AV 

l i n e a r i t y  produced by the  growth of the  p l a s t i c  zone. 

AV, and AVc are the t o t a l  displacement, the total. deviation from l i n -  

e a r i t y  and the  deviation from linearity produced by the  growth of the  

The deviat ion 

AVp/Ve, where the  terms Ve 

are the  linear e l a s t i c  displacement and the  deviat ion from P 
The terms V,  

9 



crack, respectively.  

i n  Fig. 3. 

A l l  these terms are schematically represented 

An examination of the r e s u l t s  obtained from the ana lys is  out l ined 

i n  Figs. 1 and 2 s h m  that the  parameter K*/uy& depends on t he  value 

of AV /V as s h w n  in Fig. 4. 
P e  
The AV /V value, f o r  a p l a s t i c  zone size equivalent t o  2% crack 

P 
extension, depends on a/U. This can be independently camputed from 

the standard compliance re la t ionship  [ 2 4 ] :  

(rn/P)V = f (5 

where E is Young's modulus, B is thickness, P is load, and i is 

a function of a/w only. 

EB - AV = 
P P  

where Aa is the v i r tud l  
P 

Differen t ia t ion  of Eq. ( 5 )  gives 

crack extension due to the growth of the plas- 

t i c  zone. i..s outlined i n  Eq. (4) and Fig. 3, A a  = Reff/2. Divide 

Eq. ( 6 )  by ( 5 )  and obtain 

P 

Table 1 lists AVp/Ve values for Aa /a = 0.02 as calculated from 

Eq, (7) ..or the  d i f f e ren t  a /U  values. The corresponding values of 

K*/a 4 are obtained from Fig. 4 and are a l s o  reported in Table 1. 

shown i n  the tabk ,  fo r  

responding value of K * / c r y f i  is approximately equal to  0.5 f o r  the 3 / W  

r a t io s  investigated. 

to  the value obtained by the secant technique of ASTM E399 and therefore  

K* = KQ. Thus, the analysis  shows that K 2/o 'W - 0.25. This r e s u l t  is 

l a t e r  compared with the experimental 

P 

As Y 

Reff equivalent t o  2% crack extension, the cor- 

The K" value obtained from K*uyfi= 0.5, corresponde 

Q Y  
values obtained f o r  d i f f e ren t  widths. % 

10 



K*/o,fi and the  Yielding Constraint 

The values of K* and R obtained from the  results of the ana lys i s  

outl ined i n  Figs. 1 and 2 can be used t o  deterrrtne values of m and M 

from &s. (1) and (2). As we have seen, both a and H a r e  r e l a t i v e  

measures of the y ie ld ing  constraint .  

Variations in the parameter, K*/c 6, with I f o r  various values 

of a/W are shown i n  Pig. 5 ,  which shows that as  Id is increased, R 

Y 

vi11 increase. An increase in the value of m increases t h e  crack t i p  

local stresses and this, i n  turn,  will cause a typical plane straia-type 

fracture.  

corresponding value of PI will be about 3.6. 

From Fig. 5 for a/W = 0.5,  m = 1.9 a t  K / u y a =  0.5. The 

Calculated and Experfmental Values of the Parameter 

It was shown that K 2/a 2W 0.25 c o r r e s p n d s  t o  a p l a s t i c  tone 
Q y  

size equivalent to 2% t r ack  extension and s i g n i f i e s  a value of the yield- 

ing constraint  which is constant a t  a given a/W. Figure 6 compares t h e  

experimental and the  calculated relationship,  (K /u )2 ,  versus W f o r  a 

var i e ty  of materials: 

[3,6]. The K values reported are obtained under conditions where crack 

grovth is absent. 

the usual e r r o r s  i n  the determfnation of K 

Q Y  
l w s t r e n g t h  steels [312 and alrninum nlloys 

Q 
The scatter of the data i n  the f igure may be caused by 

0' 
Errors i n  the  experimentally detemined K value can arise due to Q 

the following reasons: 

supports for the  c l i p  gauge a f f e c t s  the load-displaceorent test record; 

(a) the f r i c t i o n  a t  the loading pins and a t  the 

unp ubl is  hed work . 

11 



(b) the  secant value used t o  determine K depends on a/W and should 

be calculated from Eq. (7). 

mended in ASRi E399, is used f o r  a l l  a/W ra t ios ;  ( c )  inadequate accuracy 

of the  load-displacement test record introduces error i n  the secant mea- 

surements; and (d) the  maximum stress in t ens i ty  value used f o r  fa t igue  

cracking, Kf(max) [I], influences the  K value determined. 

Q 
Instead, q u i t e  of ten,  a 5% secant as recoat- 

Q 
The e f fec t  of K f ( m ) ,  the  maximuls stress in t ens i ty  value used i n  the  

f i n a l  stages of fa t igue  cracking on 

i n  Table 2. The \ values were measured according t o  the general pro- 

cedure outlined i n  ASTH E399 [I]. 

minimized by the use of f l a t  bottom c l ev i s  and t h a t  a t  the c l i p  gauge 

support was reduced by the use of razor blades. 

value used t o  obtain K were determined from E q .  (7), and the  load and Q 
the displacenents were recorded with an accuracy of g.25X.  

value was determined with an estimated accuracy of 22%. 

Q 

K w a s  invest igated and is reported Q' 

The f r i c t i o n  a t  the  loading pins  vas 

The load and secant 

Q The K 

As showr: i n  Table 2, K values can be s ign i f i can t ly  increased due t o  

the crack closure that occurs when the p l a s t i c  zone formed a t  the crack 

t i p  during fa t igue  cracking is unloaded. Obviously, the Kf(max) value 

should be low, preferably below Kf(max)/o fi< 0.22 

absence of the e f fec t  of Kf(max) on the de te rmind  % values. 

t o  ensure the  Y 

Considering the poteli t ial  sources of e r ro r  i n  the determination of 

K the agreement between the experimental and calculated values i n  

Fig. 6 is good. The agreement implies that K /u fi is a constant and 

is equal to  0.5. For convenience in fu ture  discussions,  the calculated 

l i n e  in  Fig. 6 is referred t o  as "l ine A." 

growth, K values measured cor rec t ly  should f a l l  on l i n e  A. K values 

Q' 

Q Y  

Thus, i n  the absence of crack 

Q Q 
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measured in the  presence of crack grovth w i l l  be located t o  the  r igh t  of 

line A. 

It is obvious from Figs. 4 ,  5 ,  and 6 that, as W increases a t  a 

glvem a/w, \ vi11 increase, but I4 w i l l  remain constant. Final ly ,  

at  a critical W - Uc, \ w i l l  approach the stress i n t e n s i t y  value a t  

vhich the crack starts extension, ICIC. This is t e d  as the  f r a c t u r e  

toughness of t he  material. U = Wc and \ = 'Crc 
re la t ionship  IC '/a 2W - 0.25 gives Wc = 4qc/uy2. A t  W > Wc, KQ > 'tC, 
aad the  crack growth starts. A t  W < Uc, only t he  p l a s t i c  zane grows as 

W increases. This can be represented by line A i n  Fig. 6. 

Subst i tut ion of in the 

Q Y  

E-CUBVE APPRWCB AT W > Wc 

The contr ibut ion of a l imited ammt of crack growth t o  the devia- 

tion from l i n e a r i t y  is evaluated from tbe ana lys i s  of a typ ica l  R-curve 

data [ Z ] .  

(a) crack growth in the absence of p l a s t i c i t y  (where the ct. 6 extends 

abruptly such as in a Type 111 or I1 load-displacement test r e c 0 r . A  [ I ] ) ,  

and (b) crack growth together with the Rrowt5 of the  p l a s t i c  zone (the 

case enccnmtered in Type-I load displac-nt test record ( I ] ) .  

The contr ibut ion is evaluated in t w o  d i f f e r e n t  cases: 

Crack Growth in the Absence of P l a s t i c i t y  

Figure 7 is a schematic representat ion of a t yp ica l  R-curve f o r  a 

specimen with width W > Wc, where % is the: stress i n t e n s i t y  value 

corrected f o r  p l a s t i c i t y  f o r  a given value of crack extension, Aa, 

R-curve is a measure of the res i s tance  of 8 material t o  crack growth. 

% value f o r  zero crack extension is equal t o  K the  f r a c t u r e  tougbess  

The 

The 

IC '  
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defined i n  tkis paper. It is assumed tha t  the R-curve f o r  a l imited 

araoirnt of crack extension, that is, Aa/a 5 0.02, can be represented b-r 

%' - K'IC ac 
9 

a '  Y 

TM assumption i n  Eq. (8) has the following ju s t i f i ca t ions :  (a) the  

CL.L-m of the equation is dimensionally homogeneous; (b) the R-curve can 

s1':o be represented as a p lo t  of the  parameter C versus Aa, where 

C For small amounts of crack extension, the relat ionship i n  Eq. (8) 

is a good approximation of the  typ ica l  R-curve da ta  represented i n  terms 

KR2. 

of G (251; and (c) the term on the left-hand s ide  of Eq. ( 8 )  is a measure 

of the  increments i n  the  energy diss ipated a f t e r  the crack growth starts 

and therefore should be related t o  the  amount of crack extension, Aa. 

Thus, Eq. (8 )  can be wr i t ten  as  A t  2% crack extension, % = \. 

= ha (9:. 
0 2  Y 

Dividing both s ides  by W , shown to  be a property of the  material, we c 
obtain 

A t  I n  addition, as explained 

earlier. tne  crack extension will start at a point on l ine  A (Fig. 6 ) .  

bala = 0 c12 and a/W = 0 .5 ,  Aa = 0.01 W. 

Therqrore, KIC = 0.25 CY 2W 

; ms in Eq. (10) g;fves the  following proportionali ty:  

Thus the  subs t i tu t ion  of these two condl- Y c' 
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'h2 - I(:C u a- 

% 

Differentiation of the above equation gives a(\2/K~C)/a(U/Uc).  Elorr- 

ever, a t  Aa/a = 0.02, \ - K, and Aa - 0.01 W since a h  = 0.5. 

Theref ore, 

a (K~/K&) 
a (Urnc) - 0.01 [ a( iwuc)  3 (11: ) 

A d a . 0 2  

The term on the right-hand side of Bq. (11) can be evaluated, a t  any @wen 

values of KIC and Uc and a/W ratio, from P, the standard K calibration 

factor for a given speciren geometry and a/w value, tbat is, 

where F = -/P and is a function of a h  only 1261 and 

Fa = Fl(a + ha)/UJ 

The K calibration factor, P, as a function of a h  is known 1261. 

Therefore, the term on the rlght-hand s i d e  in Eq. (12) can be walu- 

ated numerically. 

1/P2. 

crack growth, that ie, at 0 < d / a  < 0.05. A t  ah? = 0.S and 

The nrrPerica1 calculations show that the term, 

a(Fh)/a(Aa/W) does not vary much, over a considerable range of 

Aa/a = 0.02, thio term has a value 

S u b s t l t u t h g  &la. (13) and (12) h (11) gives 

*=)= 0.064 
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The 2% crack extension i n  the  absence of crack t i p  p l a s t i c i t y  can there- 

fo re  be represented by a s t r a i g h t  l i n e  with a s lope of 0.064 i n  the  

(K /K l 2  versus W/Wc space. This l i n e  is termed "l ine C" i n  Fig. 8.  

Line A from Fig. 6 is a l s o  shown i n  t h i s  f igure.  The s lope of l i n e  A is 

1 in Fig. 8 s ince  (K /K l 2  = (4KQ2)/(uy2Wc). Q IC 
lines A and C gives KIC 
extension occurs abruptly without any p l a s t i c i ty .  

Two observations can be made from Fig. 8. 

Q IC 

The in te rsec t ion  of 

of the material i n  a s i t u a t i o n  where crack 

F i r s t ,  t h e  s t a r t  of crack 

extension preceded by the  grovth of a p l a s t i c  zone equivalent t o  

ba/a = 0.02 

the  (Kq/KIC12 versus W/W, plot .  

t i o n  can be readi ly  iden t i f i ed  i f  the  da t a  were represented i n  such o r  

an equivalent plot .  

[ I ]  is obtained during the test, p l a s t i c i t y  preceding crack growth is 

less than 6a /a = 0.02; i n  such a case, the  decrease i n  slope i n  the  

load-displacement tes t  record as a r e s u l t  of crack i n i t i a t i o n  would be 

q u i t e  drastic and the  point of crack i n i t i a t i o n  can be readi ly  ident i f ied .  

r e s u l t s  i n  approximately a 16-times decrease i n  s lope i n  

Therefore, the point of crack i n i t i a -  

However, i f  a Type-I11 loaddisplacement test record 

P 

Second, l i n e  C 

This ind ica tes  

an increase i n  

is almost p a r a l l e l  t o  t h e  x axis which represents W. 

that, i n  the  case where the  crack extension occurs abrupt ly ,  

W has l i t t l e  e f f e c t  on KIC determined by the  intersec- 

t i on  of the  line C and any o ther  l i n e  A with an a r b i t r a r y  s lope valul? 

less than 1, i n  Fig. 8 .  Line A with a slope value less than 1 ind ica tes  

t h a t  p l a s t i c  zone preceding crack growth is  less than an amount equivalent 

t o  &a /a = 0.02. And chis  can occur in specimens with W > Wc. The 

above discussion agrees with the  observation that 
P 

K is e i t h e r  independent IC 
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of t h e  v id th  or only mildly dependent on it ,  i n  the  case where a Type111 

load displacement test record is obtained. 

However, i t  must be noted that ,  during f r a c t u r e  toughness tes t ing,  

qu i t e  o f t e n  the crack grows together v i t h  the grovth of p l a s t i c  zone. 

We have t o  consider, therefore,  t he  simultaneous grovth of t h e  crack 

and the  p l a s t i c  zone. This is done presently. 

Crack Growth i n  the Presence of P l a s t i c i t y  

In t h e  case where the  crack grow together v i t h  t h e  p l a s t i c  zone, 

the  t o t a l  deviation from l i n e a r i t y ,  AV/V, consists of two teras: 

(a) the term AV /V that r e s u l t s  from p l a s t i c  zone growth; and 

(b) the term AVc/Ve that r e s u l t s  from crack growth. These terms were 

earlier defined in Fig. 3: 

P e  

AV AVc b v = P + -  
'e 'e 'e 

The re la t ionship  between 

Fig. 4. 

approximately represented by 

AV /Ve versus K2/ay2W was shown earlier 13 
P 

A t  Aa/a = 0.02, K = KQ; therefore  the  re la t ionship  can be 

AV K 2  
3 = 0.2 f o r  a/w = 0.5 
"e Qy2W 

The contribution of crack extension t o  the deviation from l i n e a r i t y  i s  

calculated from t h e  standard compliance re la t ionship  i n  a manner 
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At a/W - 0.5, f /f ' 
relationship EVB/P = f as a function of a/W [ 2 4 ] .  At a/W = 0.5, 

f'/f = 5 .  

can be evaluated from the reported compliance 

Therefore, the above equation reduces to 

AaC - AvC 
'e Y = 5 -  

It was earlier indicated that the slope, as given in Eq. (13), does not 

change much with AalW. 

write 

Besides, at Aa/a = 0.02, K = KQ; one can then 

Aac g/ a (K2/ay2W) K 2  
W oyzW a(Aa/W) - 6. 4uy2W at a/W = 0.5 (18) - =  

Substitute Eqs. (18), (171, and (16) into (15) and solve for K */a 2W. 

One then gets 
Q Y  

K 2/a = 0.051 Q Y  

Divide Eq. (19) by 0.25 Wc and obtain 

W 

!$ = 0.204 (t) 
5 C  

(20) 

Thus, the combined effect of the crack growth and the plastic zone can 

be represented as straight lines with slopes equal to 0.051 in a 

K 2/u versus W plot and 0.204 in a K 2/K2 versus W/Wc plot. 

For convenience, these lines are referred to as line B. 
Q Y  0 IC 

DISCUSSION 

Comparison of Experimental and Calculated Results 

The K or KfC values have been determined in the CT specimens Q 
for different combinations of progressively increasing widths and thicr- 

nesses prepared from titanium alloys [SI and an aluminum alloy [6]. Tie 
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experimental and the calculated values of the  parameter K 2/a 2W are 

compared in Fig. 9. 
Q Y  

The experimental K or KIC values f a l l  around the computed l ines  Q 
A and B. This has some in t e re s t ing  implications. Some of the  experi- 

mental data points  l i e  t o  the  l e f t  of l i n e  A. The reason f o r  such 

s c a t t e r  i n  the  experimental data  has been explained earlier during the  

discussion of Fig. 6. Generally, the  agreement between the  experimental 

da ta  and the calculated l i n e  B is qui te  good. The reasonably l imited 

s c a t t e r  around the l i n e  A and the good agreement of the  experimental da ta  

with l i n e  B is par t icu lar ly  s t r i k i n g  when one considem tha t  the experi- 

mental data were obtained with tpecimens whose thickness va r i e s  by almost 

one order with the  B / ( \ / U ~ ) ~  value ranging approximately from 0.5 t o  5. 

If the  constraint  were t o  depend on the  thickness as assumed i n  ASTM E399, 

% should change s igni f icant ly  with thickness. 

It should be noted tha t  the  in te rsec t ion  of l i n e s  A and B gives a 

K value equal t o  KIC of the  material. Q 
The r e s u l t s  of the  analyses presented i n  t h i s  paper pred ic t s  t h a t ,  

i n  a (K /K ) *  versus W/Wc space, the experimental da ta  point for 

a l l  materials should f a l l  around a s ing le  B l ine .  Accordingly, the 

experimental da t a  points  located close t o  the  B l i n e s  i n  Fig. 9 a r e  

replot ted i n  Fig. 10. The experimental data ,  obtained from materials 

0 IC 

with d i f f e ren t  

l i n e  B. 

KIC and u , give r e s u l t s  that f a l l  around a s ing le  Y 

The agreement ind ica tes  t h a t  the  analyses of the  width depen- 

dence of toughness and the assumptions made in the  present paper are 

essentially correct .  As pointed out e a r l i e r ,  t h i s  agreement is a l l  thc 
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more notable when one considers t ha t  t he  da ta  obtained from thz  specimens 

have thicknesses that vary widely. 

A New Approach t o  the Determination of KIC 

As indicated earlier, K i n  the  present approach is defined as IC 
the *cress in tens i ty  value a t  which the crack extension starts. Since 

the start of crack extension being considered i n  this paper is t h a t  which 

s a t i s f i e s  ASlM E399 requirements, t h i s  w i l l  be preceded by a very l imited 

amount of p l a s t i c i t y  and s t r a i n  a t  t he  crack t i p .  Therefore, the  start 

of the  crack extension would be stress-induced. The fundamental b a s i s  of 

fracture toughness i n  such a case is outl ined in Fig. 11 and discussed 

below. 

is consis tent  with the fundamental bas i s  of f r ac tu re  toughness, is 

After that, t he  new approach t o  the determination of KIC, which 

outlined. 

The stress in t ens i ty  f a c t o r  is given by 

~ = a  4 5  
YY 

a t  

where u 

f r ac tu re  and r is the  dis tance measured from the  crack t i p  (as shown i n  

is the loca l  normal stress a t  t he  crack t i p  i n  the plane of YY 

Fig. 11). When the  width is l a rge  and the p l a s t i c i t y  is l imited,  the 

E a l/& assumed i n  the  ana lys i s  earlier, is nearly equivalent t o  
YY 

1 / 6  stress d i s t r ibu t ion  assumed i n  Eq. (21). 

the  s t r a i n s  near the crack t i p  and the plastic zone is l a rge  and t h i s  

decreases the  yielding constraint  a t  a given value of 

I f  the width is small, 

K. 

A t  crack i n i t i a t i o n ,  a + u * at r - r* (see Fig. 11) and, 
W Y Y  

correspondingly, K - KIC = u* fi where a* and r* depend on the  

s t rength  and the  microstructure of the material. A material has a 
YY YY 
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well-defined and reproducible f r ac tu re  toughness i f  a* and r* have 

c l ea r ly  defined values. 
YY 

KIC defined above depends on the  magnitude of a a t  r = r* and 
YY 

t h i s ,  i n  turn,  depends on the  yielding constraint .  Thus, t o  obtain a 

reproducible K value i n  a material, the K should be measured i n  a 

s i t ua t ion  where the  yielding cons t ra in t  is  above a ce r t a in  minimum value. 

I C  I C  

The minimum value of M is probably about 3. 

The r e s u l t s  presented i n  the  earlier sec t ions  can be used t o  evolve 

a new approach t o  the  determination of the  KIC as defined above. It 

is shown i n  Fig. 5 t h a t  t he  cons t ra in t  t o  crack t i p  yielding increases  

with the  width of a CT specimen. I f  the  width is s u f f i c i e n t l y  la rge ,  

t ha t  is, W > Wc, a so-called plane s t r a i n  f r ac tu re  under high yielding 

cons t ra in t  can be produced. It i s  also shown from a combined consider- 

a t i o n  of Figs. 4 and 5 t h a t  a l l  po in ts  on l i n e  A havt a constant value 

of M f o r  a given a/W. 

deviat ion from l i n e a r i t y  i s  produced only by the growth of the p l a s t i c  

A t  W < Wc, K * a W and the  5% secant Q 

zone and gives rise t o  l i n e  A as shown i n  Fig. 6 .  

crack growth starts and 

t i o n  of ICIC as out l ined in Fig. 11. A t  W > Wc, the  deviat ion from 

l i n e a r i t y  is produced by the  growth of the p l a s t i c  zone as well as the  

crack. The analys is ,  which evaluates the  r e l a t i v e  contr ibut ion of the 

A t  W = Wc, the  

ICQ = KIC. This is  consis tent  with the def in i -  

growth of p l a s t i c  zone and the crack t o  the t o t a l  deviation from l inear-  

i t y  and produces the l i n e  B, is  shown t o  be e s sen t i a l ly  correct  i n  Figs. 9 

and 10. 

of KIC is outlined below. 

Based on these observations, the new approach t o  the determination 
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F i r s t ,  draw l i n e  A, with a s lope of 0.25, i n  the  K '/a ' Q Y  
versus 

W space as shown i n  Fig. 12.  Measure K i n  a compact tension specimen 

with W 4 ( Y  ID )' = Wc and a h  = 0.5, following a procedure iden t i ca l  

t o  that i n  AETM E399. Next, l oca t e  the measured K value in Fig. 12. 

The K value is indicated by the point marked "X". Then, draw a l i n e  B 

with slcye - 0.05 through the  point X. The in te rsec t ion  of l i n e s  A and B 

Q 

Q Y  

Q 

i2 

gives a K value equal t o  ICIC. The approach as  out l ined above appl ies  

t o  the case where a Type-I load-displacement test record is obtain( 
Q 

The operational de f in i t i on  of [KIC] 
3 9 9  is based on 2% crack exten- 

sion. This is d i f f e ren t  from the  KIC as defined i n  Fig. 11. In most 

i n s  tances , [ KrC ] w i l l  be higher than the  KIC as defined here. 

Table 3 compares the  K a s  defined here  and [KIC] f o r  some of the  
IC 3 9 9  

materials investigated by other  workers [S,S]. 

Growth of the  P l a s t i c  Zone and the Crack i n  the  Three Cases 

During f r ac tu re  toughness t e s t i n g  of specimens with width W > Wc, 

(a) the  p l a s t i c  the p l a s t i c  zone can qrow i n  three possible  sequences: 

zone grows only before the 2% crack extension; (b) the  p l a s t i c  zone grows 

both before and during t h e  2% crack extension; and (c) the  p l a s t i c  zone 

grows only a f t e r  the 2% crack extension. These three  possible cases 

which can be encountered during the t e s t ing  are discussed below. 

t e s t ing  s i tua t ion  where 

nique w i l l  l i e  on l i n e  A. 

In the 

W < Wc, KQ values obtained by the secant tech- 

Case 1 .  

crack extension. 

zone is negligible.  

In  t h i s  case, the  p l a s t i c  zone grows only before the 2% 

During the 2% crack extension, the growth ~f p l a s t i c  

The Types I1 and I11 load-displacement test  records 
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[ I ]  which exhib i t  abrupt s ta r t  of crack extension are usually observed i n  

t h i s  case. The value of K can be obtained by the  in te rsec t ion  of 

l i n e  A and the  l i n e  C which has a slope - 0.016 i n  the  (K /a ) v8 W 

However, s ince  the p l a s t i c i t y  preceding crack extension may be less than 

2%, the  KIC 

the procedure described i n  ASTM E399. The two procedures - ' l '  y ie ld ,  

IC 
plot .  

Q Y  

i s  more appropri, t e ly  determined i n  thiG case, following 

though, only marginally d i f f e ren t  

where the p l a s t i c  zone grows by an 

p r io r  t o  the abrupt physical crack 

ICIC values. In  the 

amount equivalent t o  

extension, t h e  KIC 

l i r u i .  i g  .ase 

2% crack extension 

value can be 

o b t a i + % d  by the in t e r sec t ion  of l i n e s  A and C. 

-- Case 2. In  t h i s  case, the p l a s t i c  zone grows before as w e l l  as during 

In such a case, usually a Type-I load-displacement the 2% crack extension. 

test record [I] is obtained. The experimental da ta  on l i n e  B 17 Figs. 9 

and 10 belong t o  t h i s  case and 

the l i n e s  A and B as shown i n  Fig. 12. 

KIC i s  ob!ained by the  in t e r sec t ion  of 

Case 3. The p l a s t i c  zone does not grow before but does so only a f t e r  

the start of crack extension. Obviously, t h i s  s i t u a t i o n  is  physically 

improbable and is therefore a hypothEtica1 case. However, t he  KIC i n  

t h i s  case should be ootained by the  in te rsec t ion  of l i n e  B with t h e  

x axis.  For a f i n i t e  K value, such an in t e r sec t ion  occurs a t  a nega- Q 
t i v e  c r i t i c a l  width, Wc value, and therefore has no physical s ignif icance.  

Comments on the  Approach 

The approach is  simple, straightforward, and is  iden t i ca l  t o  

ASTM E399 i n  terms of t he  prc .edure of measurement. 
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The procedure as outlined above can be used t o  d e t e d a e  the  tough- 

ness in a compact tensioa specimen with crack lengths  d f f f e r e n t  frao 

a h  - 0.5. Eouewer, line B in that case ViLL have a d i f f e r e n t  slope. 

The analysis t o  determine l l n e s  A, 8,  lad C has also been d e  for 

three-point bend and single-edge notched tension specimens. 

trend of the results for the th ree  d i f f e r e n t  specirms is sirilar; hou- 

ever, the slopes of the lines are d i f f e r e n t  in t h e  three  d i f f e r e n t  

apecineas. 

Rle general 

"he toughness -ed here is based on the  growth of the p l a s t i c  

zone equivaleut t o  2% crack extension. 

SOIIS. F i r s t ,  it is coas ls ten t  v i t h  8399 procedure. Second, if the 

p l a s t i c  tones were larger then the 2% equivalent crack extension, the 

domination of the I/& s ingu la r i ty  Implicitly a s h  In the def in i -  

t i o n  of A ray be in considerable error. Besldes, a large p l a s t i c  

zone may lover the  yield* cons t ra in t  too much to produce a stress- 

induced plane s t r a i n  f rac ture .  Finally, if the toughness uere to be 

based 1 p l a s t i c  zone sizes smaller than 2% equivalent crack extension, 

BP accurate deterninat ian of IC would be d i f f i c u l t  because, i n  such .a 

case, the corresponding 

tha t  given in Table 1. It can be seen from Fig. 4 t ha t ,  i n i t i a l l y ,  

K/<T fi rises sharply with 

Ttris is done for several rea- 

Q 
AV /V o r  the secant values vi11 be smaller than 
P 

AV /V; therefore ,  when the secant or the  
Y P 

AV /V value is small, the  experimental 

s iderable  e r r o r  due t o  a small e r r o r  i n  

It should also be noted tnat I t  is 

P 
K values measured can be i n  con- 

the  secant measurement. 

possible t o  measure KIc in a 

Q 

specimen with W < Wc through a p l a s t i c i t y  corrected K value ( a s  i n  

the R-curve approach) provided the  crack i n i t i a t i o n  is iden t i f i ed  by an 

independent technique. 
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The approach to  the deterainat ion of ICIC as  presented here  has 

several  advantages. F i r s t ,  i t  aives  a KIC value that is independent 

of the width and also of the thickness of the speci.en. The KIc as 

defined i n  t h i s  approach is consistent with J 

s ince  a l l  of them are based on the  start of crack growth. 

and R-curve approach IC 
Final ly ,  the  

approach recognizes that a crack can extend =der linear elastic condi- 

t i ons  in t h i n  and w i d e  p l a t e s  and therefore  t h e  determination of 

in such p l a t e s  is possible. 

c a b i l i t y  of the %-KrC approach to  a wider c a b i n a t i o n  of materials and 

configurations. 

KIC 
Obviously, t h i s  increases  the range of appli-  

tmpllcation of the Results 

The agreement between the  experimental da t a  obtained from specimens 

with widely varyiag thicknesses and the predicted r e s u l t s  i n  Figs. 9 and 

10 ind ica tes  that the growth of the p l a s t i c  zone before and during the 

crack extension is not  s ign i f i can t ly  influenced by the thickness of a 

compact tension specimen. On the other hand, i n  the  coqact tension 

specimen, the p l a s t i c i t y  depends s ign i f i can t ly  on the width. The width 

dependence of p l a s t i c i t y ,  however, depends on the  s p e c h e n  configuration: 

f o r  example, the  ana lys i s  reported here shovs that i n  single-edge notch 

tension specimens, the width dependnnce of p l a s t i c i t y  is s ign i f i can t ly  

less than that In  a compact tension specimen. 

men, where the stress gradient over the whole ligament along the d i rec t ion  

of the crack is smaller, the  width dependence of p l a s t i c i t y  I s  expected 

to  be w e n  less. A precise,  three-dhensional,  e las t ic -p las t ic ,  f i n i t e -  

element ana lys i s  is required t o  understand the r e l a t i v e  contribution of 

I n  a center  notch speci- 
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the v i d t b  and t h e  thickness of a configuration t o  the  l i r i t e d  p l a s t i c i t y  

effects. 

d i r ec t ion  cmtrac tgon  as dependent on the thickness, v id th  a d  configura- 

t ion needs t o  be exper i rea ta l ly  determined. 

Alternatively,  the elastic and tbe p l a s t i c  part of the tNckne8s 

T&e loading af 8 thin, as against a thick, s t r u c t u r e  or spec- 

often produces an out-of-plane bending, and this cas obscure the exper- 

imentally obsewcd relative e f f e c t s  of vidth a d  thickness on tbc phis- 

t i c i t y .  

the W e  111 at tbe crack t i p .  

crack t i p  d e r  lbde I11 shear stress is q u i t e  df f fe ren t  fraet the situ- 

a t i o n  where it is absent. I n  f a c t ,  the use of @de p l a t e s  has consid- 

e rab le  e f f e c t  on the experimental \ values of thin specireus. 

l i  3 as buckling and out-of-plane bending of the spechen or the struc- 

t u r e  can be avoided, the width is expected to exert a r e l a t i v e l y  Large 

influeuce on t h e  p l a e f i c l t y  and caastraht in a given camfiguration. 

Such bending can produce a significant awmt of loading in 

The growth of the p l a s t i c  zone at the 

So 

The width depedcnce of the constraint ,  as shown in  Fig. 5 ,  impli9s 

that the start of the growth of a crack in a t h i n  but wide s t r u c t u r e  can 

occur under lhear e h s t i c  condition. Thus, a K approach would be 

adequate t o  characterize f r ac tu re  in such a situation. 

course, done a t  present through the R-curve approach. A J approach will 

be s ign i f i can t  only w i t h  t h e  width dimension W Wc. 

_.-- 

This is, of 

It m y  also be noted that, in the  usual representaticm of f a t igue  

crack growth, according t o  Paris convention, the start of stage-111 

crack growth is associated with the  onset of considerable p l a s t i c i t y .  

The v id th  dependence of cons t ra in t  shows t h a t  t he  l i n e a r  elastic behav- 

i o r  i n  a wider s t r u c t u r e  is extended t o  a higher K value. Therefore, 
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i n  a wider s p e c k  or st ructure .  the  stage-XI fa t igue  crack grauth b e b v i o r  

will be e x t c d e d  to a higher AK versus Q/dH regire, w h e r e  AK is tbe 

range of stress in tens i ty  f ac to r  and 

length per cycle during f a t igue  loading. 

t ions  v i t h  regard to  the  prediction of the behavior of the  s t ruc tu re  from 

the da ta  obtained from the -11 specirens, par t i cu la r ly  under s p e c t n r  

loading. 

da/dN is the increment i n  crack 

This bas s ign i f i can t  ramifica- 

In  test- of materials, a spechen of 1-r thfckness, but l a rge r  

width, nay be tested to achieve a high constraint and to obtain a va l id  

5c value. Since P increases d i r e c t l y  vi th  B, but increases  only 

with the square root of U, a t h i n  but v ide  specimen vi11 require  a 

machine v i t h  d l e r  capacity and ye t  Pe t  the constraint requirerent  

f o r  va l id  'tC measurerent. iiowwer, adequate care rust h? taken to 

m e e t  the problems of alignmeat and buckling encomtered during the 

testing of vide specimens. 

Q 

S W R Y  AM) CONCLUSIONS 

1. A method of determination of KIC is proposed anG is ver i f i ed  

by comparing experimental and calculated results. 

2. 

3. 

start of 

and JIc 

4. 

The method gives  a KJC 

The 

crack extension and is therefore  consis tent  with the R-curve 

value that is independent of width. 

%c value d e t e d n e d  is deiined on the  bas i s  of the 

approaches. 

The approach enables one t o  determine KIC i n  t h i n  but wide 

plates ,  and therefore  increases the  range of app l i cab i l i t y  of the 

approach t o  a wider combination of mater ia l s  and configurations.  - KIC 
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TABLE l-ikviatioa from linearity (AVn/V) due to the growth 
~~~ ~~ 

of plastic zone equivalent to 2% crack extension 

(Aala = 0.02) in CT specimens. 

AV /V for ha /a = 0.02 
P e  P 

a/W from Eq. (7)  from Eq. (7) and F i g .  4 

0.4 

.5 

.6 

~~ 

0.038 

.050 

,069 

0.52 

.5 

.5 
~~ ~ ~~~ ~ 

1 
K is defined as the stress intensity factor corres- Q 

ponding to 2% crack exteasion as measured by the secant tech- 

nique. In the absence of physical crack extension, the 2% 

crack extension corresponds to Aala = Aa /a = 0.02. 
P 
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1 
TABLE Hhpeudence of eacperineatally determlned I$, on K,(nax) 

-- 

in a 1CT spechen prepared from ASRl  516-grade 70 steel; 

Q - 47 Ksi. 
Y 

~ 

0.402 36 16 0.54 0.24 

0.501 35 17.2 0.52 0.25 

0.507 34 16 0.51 0.24 

0.661 37 20 0.55 0.30 

0.652 44 27 0.66 0.40 

0.667 47 30 0.70 0.45 

0.570 49 32 0.73 0.48 

1 
Kf(max) I s  the maxiam value of the stress i a t e n s i t p  used 

during the final stages of fatigue cracking. 
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TABLE 3-Comparisaa of [5c] with 5c determined by 
399 

the intersection of lines A and B. 

Material “IC] 3 99 5 C  Reference 

E31 

(31 

[51 

Ti-6Al-tV- 

Plate A 

Ti-6Al-4V- 

Plate B 

2219-T051 

Al-Alloy 

82-92 MNm-3/2 

- 

35.5 Ksic. 

77 =-3/2 

69 MNm’3/2 

29 hi=. 
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- CRACK LENGTH 

- 
*WIDTH 

, - -% 

x2 X 

I 

r t  

“ w  

(W-a) - LIGAMENT w 
NOTE: IN THE ANALYSIS, THE ORIGIN OF THE ORDINATE IS TAKEN 
AT THE POSITION OF THE STRAIN REVERSAL POINT. ACCORDINGLY, 
r, THE DISTANCE FROM THE CRACK TIP = $ - X. 

FIG. 1 - Strain distribution in the ligament, (W-a), of a compact 
tension specimen. 
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\ \ HORN SHAPED PLASTIC ZONE 
\ '  ' '. ',.. 

N-J 

NOTE: m IS A MEASURE OF THE YIELDING CONSTRAINT, AND IS 
DEFINED IN EQUATION (2). AS SHOWN IN FIGURE 1, THE STRESS 
Eyy a IW. 

FIG. 2 - The e f f ec t ive  and the nominal plastic zone s i z e s  i n  plane 
s t  rain condition, 
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t 
LOAD, f 

L 41- I 

I ' - *  

DISPLACEMENT, V 

FIG. 3 - Load-displacement curve showing the deviation from linearity 
at any given value of P and V. 
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1 .o 

.8 

.6 t 

.4 

.2 

0 

& AVb/V, = 0.05, 
I 
I 

K/ull/pj= 0.5 (REFER TABLE 1) 

I 
I Y I 

.02 .04 .08 .10 .12 

FIG. 4 - The parameter K/oyfi  a s  a function of the ratio AV /Ve ,  

a measure of the deviation from l inearity due to the formation of p l a s t i c  
zone. 
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1 .o 

.4 

.2 

0 

alw 9 0.4 

a/w * h 0.6 

I FOR a/w = 0.6 & K/uV\/W= 0.5. m = 1.9 

I 

2 3 4 
m-+ 

FIG. 5 - The parameter K/a,N a s  a function of the yielding - 
conrrtraint, m, for compmt tension specimen with different v+1*iee of - 
a&. 
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t 
[SI2-- 

-02 

.01 

0 - EXPERIMENTAL DATA 
0 Ni-Cr-MoSTEEL (31 

SAE 1020 STEEL [UNPUBLISHED 

X ASTM 5160r70 STEEL [UNPUBLISHED 
WORK BY AUTHOR] 

WORK BY AUTHOR] 
- 0 2?19-T861/APALLOY (61 

0 7475T7351 Alp ALLOY (31 
2 0 2 4 M  ALLOY (31 

COMPUTED LINE A -SLOPE = 0.25 - 
- 

0 .04 .08 .12 .16 .20 

W, m - 
FIG. 6 - Calculated and experimental values of the parameter Ko/ay&. 
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t 
KP 

FIG. 7 - Schematic of a typical R curve for W > Wc. 
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t 
[E$ 

WINT OF CRACK INITIATION 

/ 

LINE C, CRACK GROWTH ONLY - 
SLOPE = a064 

\ 
LINE A, PLASTIC ZONE ONLY - 
SLOPE = 1 

I 

FIG. 8 - Schematic representation of crack growth in the absence of 
E- lasticity in a CT specimen with a/w - 0.5. 
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.014 

-012 

.010 

' .a# [$I*'- 
.aB 

.001 

.002 

0 

0 221ST861 AQ ALLOY is1 
8 Ti-6ApJV PLATE A I41 
g Ti6Ap4V PLATE 6 I41 

LINE B - SLOPE = 0.061 

LINE A - SLOPE = 0.25 

1 
.02 .04 .06 .08 .10 .12 .I4 

W, m- 

FIG. 9 - Experimental and predicted results in  the ( /u,)* versus 
w plots.  
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1.8 

1.6 

1 A 

1.2 

t 1.0 

.8 

.6 

.4 

.2 

0 

1, DUE TO PLASTIC ZONE ONLY - SLOPE = 1 (LINE A) 

I 
I 
I / e  e 

I 

'WE TO CRACK GROWTH ONLV - 
SLOPE = 0.064 (LINE C) 

0 2219T851 AP ALLOY [SI 
6b Ti-6AMV PLATE A (41 
9 Ti-GAE-QV PLATE B [4] 

I I I I I I 
1 2 3 4 5 6 

wnNc - 
FIG. 10 - Experimental and predicted results i n  the (K / K ~ ~ )  versus 

W/Wc plots .  



AT THE POINT OF CRACK INITIATION 
At r = r*, uw = u; AND K, -+ KIC = uG@ 

FIG. 11 -Definition of KIC. 
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t 
LINE B-SLOPE = 0.05 

FIG. 12 - An outline of the proposed approach for the determination 
of K,, i n  a CT specimen with a/W = 0.5 .  
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